
A New Sheduling Algorithm for Parallel Sparse LUFatorization with Stati Pivoting�yLaura Grigori Xiaoye S. LiLawrene Berkeley National Laboratory, MS 50F-1650One Cylotron Road, Berkeley, CA 94720, USA.email: flgrigori, xslig�lbl.govAbstratIn this paper we present a stati sheduling algorithm for parallel sparse LU fa-torization with stati pivoting. The algorithm is divided into mapping and shedulingphases, using the symmetri pruned graphs of LT and U to represent dependenies.The sheduling algorithm is designed for driving the parallel exeution of the fatoriza-tion on a distributed-memory arhiteture. Experimental results and omparisons withSuperLU DIST are reported after applying this algorithm on real world appliationmatries on an IBM SP RS/6000 distributed memory mahine.1 IntrodutionTo fatorize unsymmetri and non-de�nite matries, many solvers rely on partial pivoting tomaintain numerial stability. In that ase, the strutures of the L and U fators depend bothon the struture of the initial A and on the row interhanges indued by partial pivoting.Thus the L and U strutures annot be determined before the numerial omputation of thefators. In partiular, this implies that some dynamially hanging data strutures shouldbe used, together with a dynami sheduling algorithm that identi�es data dependenieswhile the numerial omputation is in progress. In a distributed memory environment thisapproah has been observed not to sale so well [1℄.A possible way to address the salability issue is to �rst evaluate to what extent replaingthe partial pivoting with other, more stati tehniques, an help maintain numerial sta-bility. Li and Demmel show that suh tehniques are indeed possible [12℄. Their proposedSuperLU DIST solver uses a 2D distribution of the sparse matrix on a 2D grid of proessorsand is intended for large-sale distributed-memory mahines. This solver is highly paralleland its ability to sale proportionally with the matrix size has been tested on a set of largematries from various appliation domains. For almost all the matries, the 2D distributionled to a very good load balane. However, exeptions have been noted with some matries,for whih a signi�ant load imbalane was observed on 64 proessors. Experiments using�This work was supported by the Diretor, OÆe of Siene, Division of Mathematial, Information, andComputational Sienes of the U.S. Department of Energy under ontrat number DE-AC03-76SF00098.This researh used resoures of the National Energy Researh Sienti� Computing Center, whih is sup-ported by the OÆe of Siene of the U.S. Department of Energy. The work of the �rst author is alsosupported by an INRIA post-do abroad fellowship.y0-7695-1524-X/02 $17.00 () 2002 IEEE 1

the 64 proessors of a CRAY T3E [11℄ showed that the time spent in ommuniation orsynhronization represents a signi�ant perentage of the total exeution time. Even forthe matries for whih the algorithm sales well up to 128 proessors, more than 50% of thefatorization time was spent waiting to reeive messages.These experiments suggest that further re�nements are needed in order to improve theparallel eÆieny. Several possibilities exist, among whih the most relevant are: use moreaurate information about the dependenies between omputations, develop more sophis-tiated funtions to map bloks to proessors, onsider additional sheduling tehniquesoverlapping ommuniation and omputation.Several mapping and sheduling algorithms have been proposed in the literature, mainlyin the ontext of the Cholesky fatorization. These algorithms use the elimination tree [14℄to model the parallelism due to the sparsity of the matrix. An example of suh an algorithmis the subtree to subube mapping [7℄ whih leads to good performane if the eliminationtree is balaned. A generalization of this algorithm for unbalaned elimination tree is theproportional mapping algorithm, proposed by Pothen and Sun [15℄. These algorithms mapthe olumns to proessors during a top-down traversal of the elimination tree, balaningthe load while minimizing the ommuniation.Starting from these algorithms, a stati sheduling algorithm was developed in thePaStiX solver [9℄. This algorithm is based on two distint phases. The �rst phase (parti-tioning phase) assigns to eah supernode j a set of andidate proessors. They are obtainedby using the proportional mapping algorithm of Pothen and Sun [15℄. The seond phase(mapping phase) simulates the parallel fatorization to order the tasks assoiated with theomputation of eah supernode. These tasks are assigned to a subset of proessors from theset of andidate proessors. Thus, the omputation of eah supernode will be assigned toonly one proessor (in 1D distribution) or several proessors (in 2D distribution), dependingon the workload assoiated to this supernode and the number of proessors in the set ofandidate proessors.In this paper we present a stati sheduling algorithm for the sparse LU fatorization.The main goal is to redue as muh as possible the ommuniation, while balaning theload. Similar to the PaStiX solver, the algorithm uses the �rst phase to map the supernodesto proessors, followed by the seond phase to shedule the tasks. Our ontributions areas follows. In ontrast to most of the existing algorithms whih use a tree to represent thedependenies between tasks, we use the symmetri pruned graphs of LT and U to representaurate dependenies between tasks. For the �rst phase, we develop a generalization of theproportional mapping, and the resulting algorithm represent one of the main ontributionsof the paper. For the seond phase, we use a list sheduling heuristi. We show thatthis sheduling algorithm is espeially e�etive to improve the salability on large numberof proessors for very sparse matries. Compared with the 2D mapping, the number ofmessages is signi�antly redued from between 9023 and 50682 to between 615 and 3856 on64 proessors. Moreover, the proposed mapping and sheduling algorithm is fast, with itstime omplexity linear in the size of the input DAG, i.e., the symmetri pruned graph of U .The rest of the paper is organized as follows: Setion 2 introdues the dependenygraphs for the LU fatorization with stati pivoting, and desribes the sheduling algorithmfor the graph to minimize the exeution time. Experimental results and omparisons withSuperLU DIST solver are presented in Setion 3, followed by the onlusions and futurework in Setion 4. 2

2 The mapping and sheduling algorithmLet a square matrix be partitioned into bloks of submatries. This is usually obtainedby partitioning the olumns using the unsymmetri supernodes (olumns of L with thesame nonzero struture [2℄). After that, the same partitioning is applied to the rows of thematrix to further break eah supernode into bloks of submatries. We denote by Ukj (Lkj)a submatrix of U (L) at row blok index k and olumn blok index j. For eah olumnblok, we identify two types of tasks. Task Fator(k) fatorizes the olumn blok k andexists for eah 1 � k � N . Task Update(j, k) updates blok olumn k by blok olumn jand exists for j < k and Ujk 6= 0.1 The sparse LU fatorization algorithm an be desribedas:for k := 1 to N dofor j := 1 to k � 1 with Ujk 6= 0 doPerform task Update(j, k);end forPerform task Fator (k);end forWe use two phases to distribute the data and to shedule the omputations, as in thePaStiX solver. In the �rst phase we assign a set of andidate proessors to the omputationof eah supernode. In the seond phase we shedule the omputations in order to mini-mize the exeution time. During the seond phase, the omputation of eah supernode issheduled on a proessor from its andidate proessors set.The two phases of the sheduling algorithm use the dependenies between tasks. In thease of an unsymmetri matrix A, several tools an be used to represent the dependenies:� the elimination tree of A+ AT [14℄;� the elimination DAGs of LT and U [8℄;� the symmetri pruned graphs of LT and U [4, 5℄.The elimination tree of A+ AT is a struture o�ering simple manipulation and aess.This tree an be used to represent the dependenies between supernodes, but it overesti-mates these dependenies. The elimination DAGs of L and U are the transitive redutionsof the graphs of L and U , and are a ompat way of representing all dependenies betweenomputations, and only those dependenies. But a major disadvantage is their signi�antamount of onstrution time.A good tradeo� is to use the symmetri pruned graphs of LT and U . These graphs anbe built very eÆiently [4, 5℄. Even if they introdue redundant dependenies omparedto the elimination DAGs, we experimentally observed that they ontain few redundantedges. Thus, they an be used e�etively. However, due to their simpliity, we still use theelimination DAGs to develop the theoretial results. Knowing that all these results are alsovalid if used with the symmetri pruned graphs, our experimental results are based on thesymmetri pruned graphs of LT and U .1The details of the Fator() and Update() tasks are not important in desribing the algorithms in thispaper. 3

2.1 Finding a set of andidate proessorsThe goal of the �rst phase is to assign a set of proessors to eah supernode, suh that theseproessors an partiipate eÆiently in the fatorization of the supernode.For symmetri matries, the proportional mapping algorithm [15℄ attempts to map de-pendent omputations on the same proessor while balaning the load. This algorithmuses the elimination tree to represent the dependenies between supernodes. It starts byassigning all proessors to the root. Then it onsiders the subtrees of the root in desend-ing workload order. It assigns to eah subtree a subset of proessors proportional to theworkload of the subtree. The algorithm ontinues until only one proessor is assigned toeah subtree. The advantage of this algorithm is that the ommuniation in a subtreeis restrited to only between the proessors assigned to this subtree, thus ensuring a lowommuniation ost.For unsymmetri matries, we are interested in using more aurate information on thedependenies between supernodes, and in this ase the elimination DAG of U is helpful.This led us to onsider a generalization of the proportional mapping algorithm to the DAGs.At eah step of the algorithm, we onsider a node i of the graph and its set of proessors.Our goal is to assign to eah predeessor j of node i a subset of i's proessors, suh thatthe ommuniation between node i and its predeessors is minimized.When the proportional mapping algorithm is applied to the elimination tree, eah nodej has only one suessor i, and assigning to node j a subset of proessors from the set ofproessors of i will redue the ommuniation. In the ase of the elimination DAG, a nodej has several suessors, and it an ommuniate data to all these suessors. The basiidea of our approah is to assign to node j several proessors from its suessors. We assignmore proessors from the suessors with whom node j ommuniates more. To do so, weinlude a proportion of the workload assoiated with j to the workload assoiated with eahof its suessor i. This proportion depends on the ommuniation between j and i.Sine we only want to onsider ommuniation between j and its immediate suessors,a new problem arises. Some of the edge j ! k in the graph of U disappears and ours as apath of length greater than one in the elimination DAG (e.g., j ! i! k). So node j needs toupdate its immediate suessors and some of its anestors in the elimination DAG. How do weestimate the ommuniation between node j and its immediate suessor i in the eliminationDAG? We propose to approximate this as follows. We �rst ompute total ommuniationvolume to node i, inluding all the inoming edges to i in the graph of U . We then dividethis amount equally among i's immediate predeessors in the elimination DAG. In otherwords, all the ommuniation from i's desendents are treated as the ommuniation fromi's immediate predeessors, so that the global ommuniation information is retained evenin the presene of graph ontration.Algorithm 1 onsiders the oating-point operations to fatorize a supernode (FSN), thenumber of predeessors of eah supernode in the graph (noPred), the volume of ommu-niation involved in the fatorization of supernode i (avgCommIn[i℄), and the volume ofommuniation from supernode j to its suessors (ommOut[j℄). Using this information,the algorithm omputes the workload assoiated with eah supernode (WSN), taking intoaount the workload of its predeessors and the ommuniation with its predeessors.After omputing the workload assoiated with eah supernode, we an ompute the setof andidate proessors using Algorithm 2. This algorithm takes as input the dependenygraph G, annotated with the workload and ommuniation, and returns for eah supernode4

Algorithm 1 Compute the ommuniation and the workload of eah supernodeInput G: graph representing the dependenies between supernodesfor i := 1 to N doompute CommIn[i℄ and FSN [i℄;avgCommIn[i℄ := CommIn[i℄=noPred[i℄;for eah predeessor j of i in G doommOut[j℄ += avgCommIn[i℄end forend forfor i := 1 to N doWSN [i℄ := FSN [i℄;for eah predeessor j of i in G doWSN [i℄+ = avgCommIn[i℄=ommOut[j℄ �WSN [j℄;end forend fora set of andidate proessors. We add to the dependeny graph G a sink supernode N + 1,whih is used to start the algorithm.Algorithm 2 is a generalization of the proportional mapping algorithm of Pothen andSun [15℄. The main di�erene is that for eah node i, it onsiders a proportion of theworkload of eah predeessor to assign a subset of its proessors, taking into aount thevolume of ommuniation. Note that if the input graph G is a tree, the algorithm isidential to the proportional mapping algorithm. If G is a tree and i is the parent of j inthis tree, then ommOut[j℄ will be equal to avgCommIn[i℄. Thus the workload assoiatedwith supernode i, denoted as WSN [i℄, is equal to the sum of the workloads assoiated withall the nodes belonging to the subtree rooted at i, similar to the proportional mappingalgorithm of Pothen and Sun.Now we illustrate the exeution of this algorithm on an example matrix B in Figure 1,where eah olumn orresponds to a supernode and eah nonzero element orresponds to ablok.
9

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

8

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

7

6

5

4

3

2

1

98765432

��
��
��

��
��
��

1

Figure 1: A supernodal matrix B = L+ U � IFirst, we illustrate the exeution of the proportional mapping algorithm of Pothen andSun in Figure 2. This �gure shows the elimination tree of B + BT , and eah node of thistree orresponds to a supernode of the supernodal matrix B. At the right of eah node i welabel the information used by the proportional mapping algorithm, i.e. FSN represents theoating-point operations to ompute supernode i, and WSN represents the load assoiated5

Algorithm 2 Generalized proportional mapping algorithm for a DAGInput: G: an annotated graph representing the dependenies and workload, E: set of proessorspro[N + 1℄ := E;for i := 1 to N dopro[i℄ := ;;end forfor i := N + 1 to 1 doS := pro[i℄, � := jSj;if i has predeessors thenlet j1; j2; : : : jq be the predeessors of i, s.t. WSN (j1) � : : : �WSN (jq);WSN [i℄ � = FSN [i℄;for pred := j1 to jq dow := avgCommIn[i℄=ommOut[pred℄�WSN [pred℄;k := w=WSN [i℄� � + 0:5;if k = 0 or S = ; then�nd a proessor p with the least workload from pro[i℄;pro[pred℄ pro[pred℄[fpgelseif k > jSj then k := jSj; endifC := a subset of k proessors from S;pro[pred℄ pro[pred℄[CS S nC;end ifend forend ifend forwith the subtree rooted at supernode i, whih is the sum of the workloads of all the nodesbelonging to the subtree rooted at i. At the left of eah node i, we represent the set ofandidate proessors, whih later an take part in the omputation of supernode i. Forexample, node 5 disposes of 4 proessors, namely P0; P1; P2; P3. This node has two sons, 3and 4. The load of the subtree rooted at 3 represents 3=4 of the total load of the subtreerooted at 5, while the load of the subtree rooted at 4 represents 1=4 of this load. Thus,node 3 will reeive three proessors P0; P1; P2, while node 4 will reeive the proessor P3.Seond, we illustrate the exeution of our proportional mapping algorithm on the sameexample matrix B in Figure 1. The elimination DAG of U is shown in Figure 3. Again,the nodes of this graph represent supernodes of B. In Figure 3 we label at the right ofeah node its orresponding values in the arrays WSN and FSN . These values are usedin Algorithm 2. Moreover, avgCommIn[i℄ is labeled on eah edge to i, thus the valueommOut[j℄ is the sum of the outgoing edges from j. As an example, the value of the loadWSN assoiated with node 8 is obtained by doing the sum 50+ 200+ (300 � 6=9)+ (250 �6=30) = 500.In Figure 4 we present the set of andidate proessors assigned to eah node by Al-gorithm 2. In this �gure, node 10 was added as a starting point for the exeution of thealgorithm. Consider node 2. This node ommuniates mainly with its suessor 3, thusit reeives a proessor from node 3 and no proessor from node 5. Node 3 ommuniatesroughly the same amount of data to its two suessors, and thus it reeives a proessor fromeah one of its suessors 8 and 9.By omparing the results of the exeutions when using the elimination tree of B + BT6

P

P

WSN 80

P P P P

P P P P

P P P P

P P0 1

P P P P

0 1 2 3

P P P P0 1 2 3

P P P0 1 2

0 1 2 3

FSN 200

FSN 50

FSN 80
WSN 125
FSN 125

WSN 145WSN 305

WSN 550

0 1 2 3

0 1 2 3

2

3

FSN 150

FSN 50

WSN 600

FSN 100

FSN 100 FSN 145

WSN 1000

WSN 850

WSN 650

6

5

7

8

9

21

3 4Figure 2: The elimination tree of B +BT orresponding to the matrix in Figure 1
24

FSN 150 FSN 50

WSN 145WSN 80WSN 125

WSN 250WSN 300WSN 200

WSN 250

66
63

30 30 2 2

WSN 500
FSN 50

FSN 200 FSN 100 FSN 100

FSN 125 FSN 80 FSN 145

WSN 250

1 4

3

9 8 6

7 5

2Figure 3: Elimination DAG of U orresponding to the matrix in Figure 17

P P

P

P
0 2 3

30 21

0 P

P PP

P P

0 1 2 3P P P P

31 2P

3

1

10

9 8

4

6

7 5

2Figure 4: Illustration of Algorithm 2 on the elimination DAG from Figure 3(Figure 2) and the elimination DAG of U (Figure 4), we notie that our approah usingthe elimination DAG tries to minimize the ommuniation by onsidering the dependeniesbetween supernodes and their ommuniation. Node 3 in Figure 2 has reeived a subset ofproessors from node 5, even if there is no dependeny between supernodes 5 and 3. This isdue to the fat that the elimination tree of A+ AT introdues false dependenies betweensupernodes.2.2 Sheduling the omputationsAfter the phase for mapping a supernode to a set of andidate proessors, we performsheduling. We use a list-based sheduling heuristi [6, 16℄ in this phase, whih assigns thetasks assoiated with the omputation of eah supernode to a proessor from the set ofandidate proessors.A left-looking approah with a 1D distribution of the data is used: the omputaion ofa supernode k is assigned to one proessor; the updates to supernode k (Update(*, k)) areexeuted just before the fatorisation of this supernode (Fator(k)).With this approah, the elimination DAG of U gives all the dependenies betweensupernodes omputations, and hene it an be used as a dependeny graph in the listsheduling algorithm. Eah node of this graph orresponds to a supernode. An entrysupernode is de�ned as a supernode with no inoming edges, while an exit supernode isde�ned as a supernode with no outgoing edges. During the sheduling, a supernode beomesready when all its predeessors were sheduled.Eah supernode has a omputation ost, whih is the number of oating-point operationsperformed for this supernode. Eah edge is assigned a ommuniation ost, whih is equalto the volume of data transferred between its two end supernodes. Using this information,we assign the priority of eah supernode as the longest path from this supernode to an exitsupernode. The length of the path is the sum of the ommuniation and the omputation8

osts of its onstituent edges and supernodes.For eah proessor we maintain a list of ready supernodes and the proessor's start time.At eah iteration of the sheduling loop, we selet the proessor with the earliest start time.From its list of ready supernodes, the supernode with the highest priority is seleted (saysupernode k), and needs to be assigned to one of its andidate proessors that an exeute itat the earliest time. Thus, we attempt to assign the supernode to eah proessor in its set ofandidate proessors, and determine on whih proessor the omputation of this supernodean have the earliest start time. The supernode is then mapped on the seleted proessorand the tasks assoiated with its omputation (tasks Update(*, k) and Fator(k) an besheduled as soon as the omputation of the last supernode assigned to that proessor is�nished. To overlap omputations and ommuniations, we onsider a valid order betweentasks Update(*, k), and we shedule them in the order in whih the data needed from itspredeessors has arrived loally; we disuss the valid order further in this setion.The proessor start time is updated as the �nish time of the supernode sheduled onthat proessor. If a suessor of the urrent supernode beomes ready for exeution, thenit is added to the ready list of every proessor in its andidates set. The sheduling loop isrepeated as long as there exist unsheduled supernodes.A valid order between tasks Update(j, k) is given by the asending order of the indiesj. Using the elimination DAG of LT , we an obtain a valid order whih uses more aurateinformation on the dependenies between these tasks.The following lemma gives the dependeny between the updates from two supernodesi; i0 to supernode k, where i; i0 are linked by a path in the elimination DAG of LT .Lemma 1 Consider supernodes i; i0 and k suh that i0 is the suessor of i in the elimi-nation DAG of LT and tasks Update(i, k), Update(i', k) exist. Then task Update(i, k) hasto be ompleted before task Update(i', k) an start its exeution.Proof As i0 is the suessor of i in the elimination DAG of LT , then blok Li0i is nonzero.As tasks Update(i, k), Update(i', k) exist, we an dedue that bloks Uik ; Ui0;k are alsononzero.Task Update(i', k) an begin its exeution as soon as all the updates to blok Ui0k are�nished. As task Update(i, k) is one of these updates, then this task must modify blokUi0k before task Update(i', k) an start its exeution. 2Let i; i0 be two supernodes suh that i < i0. If there is no path from i to i0 in theelimination DAG of LT , then blok Li0i is zero. Consider another node k suh that tasksUpdate(i, k), Update(i', k) exist. Then there is no dependeny between the two tasks, as taskUpdate(i, k) does not modify blok Ui0k neessary for the exeution of task Update(i', k).From these results, the dependenies an be de�ned as follows :� There is a task Update(i, k) for eah Uik 6= 0 and 1 � i < k � N .� There is a dependeny from Update(i, k) to Update(i', k) if i0 is the suessor of i inthe elimination DAG of LT .� There is a dependeny from Update(i, k) to Fator(k) if i is an exit node, or thesmallest suessor j of i in the elimination DAG of LT is no smaller than k.We illustrate in Figure 5 these rules by omputing the dependenies between the tasksassoiated with supernode 8 for the matrix in Figure 1. Before fatorizing this supernode9

(task Fator(8) in the dependeny graph), supernode 8 is updated by supernodes 1; 2; 3; 5and 7. A valid order of these updates is given by the asending order of the soure supern-odes in the updates 1; 2; 3; 5; 7. However, an order exhibiting more parallelism is the orderusing the elimination DAG. Hene, there is a dependeny from Update(1, 8) to Update(3, 8)beause 3 is the suessor of 1 in the elimination DAG of LT (the elimination DAG of LT ispresented in Figure 6). But there is no dependeny between Update(2, 8) and Update(3, 8)beause there is no path from 2 to 3 in the elimination DAG of LT .
Factor(1)

Factor(3)

Update(1,8)

Update(3,8)

Factor(2)

Update(2,8)

Factor(5)

Update(5,8)

Update(7,8)

Factor(8)

Factor(7)Figure 5: Illustration of several dependenies involved in the fatorization of supernode 8for the matrix in Figure 1
4 6

1

2

7 9

5 8

3Figure 6: Elimination DAG of LT orresponding to the matrix in Figure 110

Matrix Order nnz(A) nnz(L+ U � I) Flops�106 �109af23560 23650 460598 12.8 5.41bbmat 38744 1771722 36.2 27.80ex11 16614 1096948 14.1 5.99onetone1 62424 1717792 11.8 0.90onetone2 36057 227628 1.3 0.23rma10 46835 2374001 14.7 1.60venkat01 62424 1717792 11.8 2.41wang4 26064 177196 27.7 8.78Table 1: Benhmark matries.3 Experimental resultsIn this setion, we present the experimental results obtained when applying the new shedul-ing tehniques on the real world matries. We tested the new fatorization method on anIBM SP RS/6000 distributed memory mahine at NERSC. The system ontains 2944 om-pute proessors distributed among 184 ompute nodes. Eah proessor is loked at 375Mhz and has a peak performane of 1:5 GFlops. Eah node has 16 to 64 Gbytes of sharedmemory. We used several medium and large matries from a variety of appliation domains.These matries and their harateristis are presented in table 1, whih inludes the matrixorder, the number of nonzeros in the matrix A, the number of nonzeros in the fators Land U , and the number of oating-point operations.Table 2 presents the size of the supernodal graph and its symmetri pruned graph.The seond and the third olumns list the number of nodes and edges in the supernodalgraph of U . The fourth olumn lists the number of edges in the symmetri pruned graphof U . The �fth and the sixth olumns list the number of entry and exit supernodes in thesymmetri pruned graph of U . For all our test matries, the supernodal symmetri prunedgraph of U is muh smaller than the supernodal graph of U . Very often, there are one orderof magnitude fewer edges than in the supernodal graph of U . Three of the test matries(ex11, venkat01 and wang4) are struturally symmetri, in whih ase the pruned graphis a tree. Computing the symmetri pruned graph takes very little time, and this time isinluded in the sheduling time overhead reported in Figure 7 and Table 5.We now ompare the performane of the new fatorization algorithm (referred as SCHED)to the fatorization algorithm in SuperLU DIST (referred as SLUD). In partiular, we om-pare the load balane, the amount of ommuniation and the runtime.For both algorithms, the preproessing steps are the same. These inlude a step topermute large entries on the diagonal (using the routine MC64 [3℄), followed by a symetripermutation to preserve the sparsity (using multiple minimum degree algorithm appliedon A + AT [13℄) and the symboli fatorization to get the strutures of L and U . Onlythe numerial fatorization phase is di�erent in the two approahes. This inludes thematrix distribution and the atual fatorization. After the preproessing steps, SLUDdistributes the data among proessors using a 2D blok-yli distribution on a 2D grid ofproessors. Loally on the set of owner proessors, eah supernode of L is stored in a olumnoriented format, while eah supernode of U is stored in a row oriented format. This storage11

Matrix #snodes #edges #edges #entries #exitsG(SNU) G(pr SNU) G(pr SNU) G(pr SNU)af23560 10543 78962 10700 7482 1bbmat 12726 214767 16944 5451 1ex11 2597 23603 2596 678 1onetone1 22370 123427 37323 10274 611onetone2 21682 69098 27602 10426 611rma10 7861 33265 7862 3045 1venkat01 13570 61348 13569 4116 1wang4 16302 89082 16301 11710 1Table 2: Charateristis of the graphs. G(SNU) is the supernodal graph of U . G(pr SNU)is the symetri pruned supernodal graph of U.P = 4 P = 16 P = 32 P = 64 P = 128af23560 SCHED 0.91 0.96 0.91 0.75 0.52SLUD 0.94 0.81 0.75 0.62 0.58bbmat SCHED 0.99 0.88 0.82 0.79 0.62SLUD 0.97 0.91 0.80 0.65 0.60ex11 SCHED 0.98 0.85 0.69 0.54 0.32SLUD 0.97 0.93 0.83 0.67 0.52onetone1 SCHED 0.94 0.74 0.49 0.48 0.24SLUD 0.86 0.83 0.66 0.50 0.45onetone2 SCHED 0.83 0.46 0.40 0.31 0.16SLUD 0.81 0.64 0.59 0.40 0.21rma10 SCHED 0.88 0.70 0.49 0.66 0.48SLUD 0.89 0.70 0.67 0.49 0.43venkat01 SCHED 0.95 0.91 0.90 0.63 0.37SLUD 0.93 0.75 0.74 0.56 0.47wang4 SCHED 0.98 0.90 0.76 0.87 0.52SLUD 0.99 0.91 0.86 0.75 0.60Table 3: Load balane results.sheme �ts well the right-looking fatorization. In SCHED, a master proessor exeutes thesheduling algorithm, and then sends the neessary information to all the other proessors toguide the numerial fatorization. Eah supernode is distributed on its owner proessor, andis stored using a olumn oriented format, for both L and U . This storage is well adaptedto the left-looking fatorization. After the distribution, the numerial fatotorization isperformed using the valid task order established by the sheduling algorithm.To evaluate the load balane, we onsider the load assoiated with a proessor as beingthe number of oating-point operations performed on this proessor. As desribed in [11℄,the load balane fator an be omputed as the average load divided by the maximum loadamong all the proessors. Thus, the loser is this fator to 1, the better is the load balane.Table 3 shows the load balane fators. Compared with the 2D blok-yli mapping, theproportional mapping algorithm usually improves load balane, with very few exeptions.Table 4 ompares the amount of ommuniation of the two algorithms. For eah matrix,we report the average ommuniation volume and the average number of messages per12

P = 4 P = 16 P = 32 P = 64 P = 128af23560 SCHED Vol 20.83 22.27 18.47 14.04 8.20SLUD Vol 27.27 21.25 16.38 13.01 8.13SCHED #Mess 5647 2474 1869 1465 1250SLUD #Mess 26185 36350 26632 33638 20301bbmat SCHED Vol 90.69 81.75 75.00 53.50 49.98SLUD Vol 81.53 62.67 51.23 38.09 27.77SCHED #Mess 9663 3931 3307 2469 2442SLUD #Mess 31719 45815 37640 46521 32686ex11 SCHED Vol 25.72 25.98 23.15 13.57 9.71SLUD Vol 25.02 19.44 15.45 11.98 8.00SCHED #Mess 2435 1002 907 615 586SLUD #Mess 6486 9336 7247 9023 5639onetone1 SCHED Vol 7.90 6.59 6.20 5.95 3.94SLUD Vol 7.56 5.82 4.16 3.56 2.26SCHED #Mess 46303 2859 3115 3856 2653SLUD #Mess 47639 57738 37322 50682 29359onetone2 SCHED Vol 3.58 2.90 2.24 1.29 0.96SLUD Vol 4.16 3.25 2.20 2.05 1.20SCHED #Mess 14601 1934 2052 881 701SLUD #Mess 46173 53654 32701 45379 24176rma10 SCHED Vol 13.64 8.37 6.69 5.13 3.33SLUD Vol 21.73 16.98 11.14 10.33 5.52SCHED #Mess 1861 839 719 566 469SLUD #Mess 19049 23743 14890 19717 10631venkat01 SCHED Vol 14.95 9.86 8.50 7.29 4.04SLUD Vol 27.65 21.33 14.00 12.62 6.91SCHED #Mess 1505 545 632 627 428SLUD #Mess 33556 42675 26918 35343 19143wang4 SCHED Vol 34.41 33.34 32.85 24.29 22.17SLUD Vol 24.59 18.91 14.78 11.47 8.07SCHED #Mess 12308 2703 2684 2038 2123SLUD #Mess 39470 50035 32983 43182 24582Table 4: Average ommuniation volume and number of messages per proessor.proessor. For all the test matries, SCHED leads to a large redution in the number ofmessages. Usually the average number of messages inreases with the inreasing number ofproessors up to 16 or 32, and then it starts dereasing. On the other hand, the volumeof ommuniation for SCHED is not always smaller than for SLUD. Sometimes SCHEDis better and sometimes SLUD is better. But the di�erene is not dramati. The worstase is matrix wang4, for whih the SCHED's ommuniation volume is twie more thanthat of SLUD. These results imply that in SCHED, the message size is usually muh biggerthan that in SLUD. This is mainly beause using the 1D distribution in SCHED, a messageontains an entire supernode k of L. Whereas in SLUD, a message ontains only a part ofsupernode k of L. Therefore, it is important to overlap omputation with ommuniation soto avoid the idle time waiting for the messages. This is well addressed in the new shedulingalgorithm.Finally, we ompare the atual runtimes in Figure 7. (The runtimes are also tabulated intable 5.) Eah plot in the �gure orresponds to one matrix with varying number of proes-13

sors. Sine the two algorithms di�er in matrix distribution and numerial fatorization, weseparately report the distribution time (labeled \dist") and the fatorization time (labeled\fat"). We also report the total time whih is the sum of the two. SCHED also needs topay a small ost of sheduling overhead. We report this separately (labeled \shedule").The reason we do not inlude this in the total time for SCHED is that when the matriesof the same nonzero struture are fatorized multiple times, the sheduling algorithm willonly be invoked one, and hene the ost is very small.On smaller number of proessors (less than 16), the distribution time for SCHEDan be drastially smaller than that for SLUD, suh as matries af23560, onetone1 andonetone2. This is due to the fat that storing both supernodes of L and U in a olumn ori-ented format an lead to a more eÆient distribution algorithm. But with inreasing numberof proessors, the distribution time for SCHED inreases, while for SLUD it dereases. Onone proessor, the time di�erene is only in the distribution step. The fatorization speedis about the same for both odes.When omparing the total time of both distribution and fatorization, SCHED is fasterthan SLUD for 6 matries; it is more than twie faster for matrix venkat01. We observedmore improvement on a large number of proessors, where the total number of messagesusually inreases. In this ase it is even more important to redue the number of messages,and thus SCHED approah is e�etive. The time ontinues to derease when inreasing thenumber of proessors up to 64. Beyond 64 proessors, only the time for bbmat ontinuesto derease. This implies that this set of test matries is not large enough to demonstratesalability of the algorithms. In the future, we will test larger matries.For ex11 and bbmat, SLUD is faster than SCHED. These two matries are relativelydenser than the other matries. We suspet that these matries exhibit limited amountof parallelism to be exploited in a left-looking algorithm with a 1D distribution. The 2Dblok-yli distribution used by SLUD an exploit more parallelism. As part of the futurework, we will study the performane impat on denser matries when using a 1D partitionor a 2D partition (the 2D partition was shown to be more salable for dense matries). Wewill also evaluate the paralelism available in a left-looking algorithm versus a right-lookingalgorithm.4 Conlusions and future workIn this paper we present a new assignment and stati sheduling algorithm for sparse LUfatorization with stati pivoting. This algorithm uses the symmetri pruned graphs of LTand U to represent the dependenies between omputations, thus exploiting the parallelismdue to the sparsity and asymmetry of the matrix. Experimental results show that ourapproah leads to a large redution in the number of messages, and for very sparse matriesthe performane ompares favorably to that of the SuperLU DIST solver on the IBM SPRS/6000 mahine. Furthermore, the proposed sheduling algorithm is easy to implementand is fast, with its time omplexity linear in the size of the input DAG, i.e., the symmetripruned graph of U .In an earlier work omparing SuperLU DIST and MUMPS [1℄, it was found that MUMPSis faster for smaller numbers of proessors (e.g., up to 64 on a Cray T3E), but SuperLU DISTis faster for larger numbers of proessors and shows better salability. The new fatorizationalgorithm SCHED in this paper usually performs better than SuperLU DIST, espeially forsparser matries and larger mahines. Therefore, it ompares favorably with MUMPS for14

16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

Processors

S
ec

on
ds

af23560

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

2

4

6

8

10

12

14

Processors

S
ec

on
ds

bbmat

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

0.5

1

1.5

2

2.5

3

Processors

S
ec

on
ds

ex11

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Processors

S
ec

on
ds

onetone1

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Processors

S
ec

on
ds

onetone2

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Processors

S
ec

on
ds

rma10

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

1

2

3

4

5

6

Processors

S
ec

on
ds

venkat01

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: schedule

16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Processors

S
ec

on
ds

wang4

SCHED: dist
SLUD: dist
SCHED: fact
SLUD: fact
SCHED: total
SLUD: total
SCHED: scheduleFigure 7: Comparison of the runtime between SCHED and SLUD.15

P = 1 P = 4 P = 16 P = 32 P = 64 P = 128af23560 shedule 0.21 0.20 0.30 0.32 0.27 0.32SCHED 13.19 4.51 2.82 2.19 2.29 1.99SLUD 17.38 6.05 3.36 2.93 3.53 3.38bbmat shedule 0.90 0.88 0.92 0.93 0.99 1.02SCHED 75.75 34.28 12.75 9.53 8.17 7.83SLUD 82.78 24.27 9.74 7.13 7.16 7.60ex11 shedule 0.10 0.05 0.06 0.06 0.07 0.08SCHED 11.55 4.20 2.24 2.30 2.35 2.80SLUD 11.14 3.96 1.99 1.67 2.04 2.11onetone1 shedule 0.36 0.32 0.37 0.42 0.51 0.60SCHED 9.78 4.40 3.91 2.61 2.90 3.04SLUD 34.13 10.21 4.30 3.27 3.65 4.88onetone2 shedule 0.27 0.20 0.22 0.26 0.32 0.45SCHED 3.07 1.73 1.71 1.58 1.63 1.84SLUD 27.27 8.88 4.18 3.14 3.77 3.43rma10 shedule 0.19 0.09 0.09 0.10 0.13 0.17SCHED 6.45 2.38 2.08 1.37 1.89 2.15SLUD 8.43 3.94 3.04 2.74 4.13 3.95venkat01 shedule 0.18 0.14 0.16 0.18 0.21 0.30SCHED 8.68 3.22 2.13 1.28 1.99 2.03SLUD 16.73 6.75 4.48 3.92 5.25 5.28wang4 shedule 0.26 0.21 0.30 0.28 0.33 0.40SCHED 19.27 5.60 2.89 2.73 2.55 3.23SLUD 30.57 9.20 4.47 3.57 4.43 4.18Table 5: Shedule time in seonds (shedule), total numerial fatorization time in seonds(inluding data distribution time) on the IBM SP RS/6000.
16

large numbers of proessors.Future work remains to improve the performane of the new approah and several av-enues an be explored. A more aurate performane model should be developped in orderto e�etively use the list sheduling algorithm and to redue the proessor's idle time. Moreoptimizations an be done to better overlap omputation and ommuniation. Methods forontrolling the memory requirement on eah proessor will be analyzed and implemented,whih an improve the memory usage of the left-looking sheme.To speed up the numerial fatorization for denser matries, we plan to extend ourmethods so that both 1D and 2D distributions will be used. During the list shedulingalgorithm, the omputation of eah supernode will be assigned to one proessor (in 1D dis-tribution) or several proessors (in 2D distribution), depending on the workload assoiatedto this supernode and the number of proessors in the set of andidate proessors. Thusboth task and data parallelism will be exploited in the program.One �nal remark is about the hoie of the algorithm { when to use SCHED and whento use SLUD, sine both have merits. As we mentioned earlier, we think SCHED performsbetter for sparser problems. So we sort the matries in terms of density, whih is de�nedas nnz(L + U)=n2, and plot the performane gain of SCHED over SLUD in �gure 8. Ifour onjeture was true, eah line would inrease monotonously with inreasing density.We somewhat see this trend, with some exeptions, suh as matries af23560 and wang4,orresponding to the two dips in the plots. These two matries are relatively dense, butSCHED performs better. We admit that the performane gain is a omplex funtion of theinput matrix and the two di�erent algorithms. More fators than just sparsity a�et theperformane. It remains an open question to predit performane of di�erent algorithmsfrom the input matrix in order to help hoose the right algorithm. For this, we plan toinlude a muh larger set of matries and analyze the global trend.
0 0.02 0.04 0.06

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Density = nnz(L+U)/n2

T
im

e
ra

tio
 o

f S
C

H
E

D
 o

ve
r

S
LU

P = 16
P = 32
P = 64
P = 128

Figure 8: The ratio of the total time SCHED over SLUD.17

Referenes[1℄ P. R. Amestoy, I. S. Du�, J.-Y. L'Exellent, and X. S. Li. Analysis and omparison of twogeneral sparse solvers for distributed memory omputers. ACM Transations on MathematialSoftware, 27(4):388{421, De. 2001.[2℄ J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A SupernodalApproah to Sparse Partial Pivoting. SIAM Journal on Matrix Analysis and Appliations,20(3):720{755, 1999.[3℄ I. S. Du� and J. Koster. On algorithms for permuting large entries to the diagonal of a sparsematrix. SIAM J. Matrix Analysis and Appliations, 22(4):973{996, 2001.[4℄ S. C. Eisenstat and J. W. H. Liu. Exploiting Strutural Symmetry in Unsymmetri SparseSymboli Fatorization. SIAM J. Matrix Anal. Appl., 13(1):202{211, 1992.[5℄ S. C. Eisenstat and J. W. H. Liu. Exploiting strutural symmetry in a sparse partial pivotingode. SIAM Journal on Sienti� Computing, 14(1):253{257, January 1993.[6℄ H. El-Rewini, H. H. Ali, and T. G. Lewis. Task sheduling in multiproessing systems. IEEEComputer, pages 27{37, De. 1995.[7℄ J. A. George, J. W. H. Liu, and E. G. Ng. Communiation results for parallel sparse Choleskyfatorization on a hyperube. Parallel Computing, 10:287{298, 1989.[8℄ J. R. Gilbert and J. W. Liu. Elimination strutures for unsymmetri sparse LU fators. SIAMJ. Matrix Anal. Appl., 14(2):334{352, April 1993.[9℄ P. Henon, P. Ramet, and J. Roman. Pastix: A parallel diret solver for sparse spd matriesbased on eÆient stati sheduling and memory managment. In SIAM Conferene PPSC'2001,Portsmouth, Virginie, USA, 2001.[10℄ M. Joshi, G. Karypis, V. Kumar, A. Gupta, and F. Gustavson. PSPASES: Salable ParallelDiret Solver Library for Sparse Symmetri Positive De�nite Linear Systems. Tehnial report,University of Minnesota and IBM Thomas J. Watson Researh Center, May 1999.[11℄ X. S. Li and J. W. Demmel. Making Sparse Gaussian Elimination Salable by Stati Pivoting.SuperComputing, 1998.[12℄ X. S. Li and J. W. Demmel. A Salable Sparse Diret Solver Using Stati Pivoting. 9th SIAMConferene on Parallel Proessing and Sienti� Computing, 1999.[13℄ J. W. Liu. Modi�ation of the minimumdegree algorithm by multiple elimination. ACM Trans.Math. Software, 11:141{153, 1985.[14℄ J. W. H. Liu. The Role of Elimination Trees in Sparse Fatorization. SIAM J. Matrix Annal.Appl., 11(1):134{172, 1990.[15℄ A. Pothen and C. Sun. A Mapping Algorithm for Parallel Sparse Cholesky Fatorization.SIAM Journal on Sienti� Computing, pages 1253{1257, 1993.[16℄ M. Wu and D. D. Gajski. Hypertool: A programming aid for message-passing systems. IEEETrans. on Parallel and Distributed Systems, 5(9):951{967, 1994.
18

